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Peculiar Velocity Field
Measure the line of sight peculiar velocities:

vp = cz – Hor

The difference between the redshift and the distance

The peculiar velocity field is dominated by large scales

Comparison of velocity fields & Luminous matter 
distribution !! !       bias, " ...

Linear structure

Why should we study vp ?

Test of gravitational instability model !∇ · !V =
δρ

ρ
!∇× !V = 0

A direct probe of the mass distribution !V = −!∇φ
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Local Group Velocity (Cautionary History Lesson)

VCMB   271o  +29o  620 km / s

VLP   220o  –28o  561 ± 284 km / s

VRPK   260o  +54o  600 ± 350 km / s

VSMAC   195o      0o  700 ± 250 km / s

VLP10k   173o  +63o      1000 ± 500 km / s

VSC   180o       0o  100 ± 150 km / s

Survey    l          b         |VLG|
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Velocity Fields
The Modern Version

HAF, Watkins & Hudson, arXiv.0911.5516 (2009)

Watkins, HAF & Hudson, MNRAS, 392, 743-756 (2009)

HAF & Watkins, MNRAS 387, 825-829 (2008) 

Watkins & HAF, MNRAS 379, 343-348 (2007)

Sarkar, HAF & Watkins, MNRAS 375 691-697 (2007)
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• Construct the full three dimensional bulk-flow 
vectors. 

• Compare bulk-flow for peculiar velocity 
surveys.

• Surveys differ in their 
o geometry
o measurement errors
o galaxy types.

• The overall errors are
• Statistical
• Systematic
• Aliasing

Redshift–Distance surveys
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On scales that are small compared to the Hubble 
radius,  galaxy motions are manifest in deviations 

from the idealized isotropic cosmological 
expansion

The Physics of Velocity Fields

The redshift–distance samples, obtained from 
peculiar velocity surveys, allow us to determine 

the radial (line–of–sight) component of the 
peculiar velocity of each galaxy:
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Large Scale FlowsHume A. Feldman UC Berkeley Lunch Seminar, March 10, 2010 9

Galaxies trace the large–scale linear velocity field 
v(r) which is described by a Gaussian random field 
that is completely defined, in Fourier space, by its 
velocity power spectrum Pv(k).

The Physics of Velocity Fields

Fourier Transform of the line-of-sight velocity 

Define the velocity power spectrum Pv(k)
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In linear theory, the velocity power spectrum is 
related to the density power spectrum

The Physics of Velocity Fields

The rate of growth of 
the perturbations at the 

present epoch
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In linear theory, the velocity power spectrum is 
related to the density power spectrum

The Physics of Velocity Fields

The power spectrum provides a complete 
statistical description of the linear peculiar 

velocity field.
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A catalog of peculiar velocities galaxies, labeled by 
an index n 
Positions rn    

Estimates of the line-of-sight peculiar velocities Sn   

Uncertainties !n 

Assume that observational errors are Gaussian 
distributed.

Likelihood Methods for Peculiar Velocities

Model the velocity field as  a uniform streaming 
motion, or bulk flow,  denoted by U, about which are 
random motions drawn from a Gaussian distribution 

with a 1-D velocity dispersion σ* 
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Likelihood function for the bulk flow components

Likelihood Methods for Peculiar Velocities

Maximum likelihood solution for bulk flow

where
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Likelihood Methods for Peculiar Velocities

The measured peculiar velocity of galaxy n

A Gaussian with zero mean 
and variance

Rij = vi vj = Rij
(v ) + ! ij " i

2 +" *
2( )

Rij
(v ) =

1
2!( )3

P(v )(k)Wij
2 (k)d3k"

=
H2 f 2 #0( )
2! 2

P(k)Wij
2 (k)dk"

Theoretical 
covariance matrix 
for the bulk flow 
components
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Likelihood Methods for Peculiar Velocities

Question: Are surveys consistent with each other?

Even if two surveys are measuring the same 

underlying velocity field, they will not necessarily 

give the same bulk flow.   

Reasons:

! measurement errors in the peculiar velocities

! surveys probe the velocity field in a different way

Tuesday, March 9, 2010
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Comparing Velocity Field Surveys
Sarkar, HAF, Watkins, 2007

Tuesday, March 9, 2010
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Comparing Velocity Field Surveys
Sarkar, HAF, Watkins, 2007
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Can we do better?

Get rid of small scale aliasing?

Improve the window 
function design

Tuesday, March 9, 2010
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vi(r) = Ui + Uijrj + Uijkrjrk + ...

19

Window Function Design
Decomposition of the velocity field Kaiser 88, Jaffe & Kaiser 95

Bulk Flow Shear Octuple

If the velocity is a potential flow then both shear 
and octuple are symmetric (curl Free)

 3 DoF for BF
 6 DoF for shear
 10 DoF for Octuple } 19 Independent 

components
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Window Function Design

depends on the spatial distribution and the errors.

wi,n = A−1
ij

�

n

xj · rn

σ2
n + σ2

∗

The BF Maximum Likelihood Estimates of the weights (MLE)

Goal:
 Study motions on largest scales
 Require WF that 
 have narrow peaks 
 small amplitude outside peak
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Consider an ideal survey
 Very large number of points
 Isotropic distribution
 Gaussian falloff n(r) ∝ exp(−r2/2R2

I)

ui =
�

n

wi,nSn

�(ui − Ui)2�

21

Window Function Design

RI Depth of the survey

Find the weights that specify the moments

that minimize the variance
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e.g.: A pure octupole flow in a given volume V

vi = Uijkrirk

�

V
Uijkrirk d3r

22

Window Function Design
BF and shear moments are orthogonal by design
Higher moments are not.

contains a net bulk flow

Which leads to a strong correlation between 
the bulk flow and octupole moments
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Redefine the octuple moments

vi(r) = Ui + Uijrj + Uijk (rjrk − Λjk) + ...

where

Λjk =
�

V
rjrk d3r

23

Window Function Design

For a spherically symmetric volume 
only Λii are non-zero
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Where

and

s(r) = �v · r̂

= Uir̂i + Uijrr̂ir̂j + Uijk

�
r2r̂ir̂j r̂k − Λjkr̂i

�
+ ...

=
19�

p=1

Upgp(r)

Up = {U1, U2, U3, U11, U22, U33, U12, U23, U13, U111,

U222, U333, U112, U223, U331, U122, U233, U113, U123}

gp(r) = {r̂1, r̂2, r̂3, rr̂
2
1, rr̂

2
2, rr̂

2
3, 2rr̂1r̂2, 2rr̂2r̂3, 2rr̂1r̂3,

r2r̂3
1 − Λ11r̂1, r

2r̂3
2 − Λ22r̂2, r

2r̂3
3 − Λ33r̂3, 3r2r̂2

1 r̂2 − Λ11r̂2, 3r2r̂2
2 r̂3 − Λ22r̂3,

3r2r̂2
3 r̂1 − Λ33r̂1, 3r2r̂2

2 r̂1 − Λ22r̂1, 3r2r̂2
3 r̂2 − Λ33r̂2, 3r2r̂2

1 r̂3 − Λ11r̂3, 6r2r̂1r̂2r̂3}

24

Window Function Design
Line-of-sight peculiar velocity
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Up =
1

No

No�

n=1

gp(rn)sn =
�

n

w�
p,nsn w�

p,n =
gp(rn)

No

up =
N�

n=1

wp,nSn

25

Window Function Design
Ideal velocity moments

wp,nGiven Up, find the weights         such that    

gives the best possible 
estimates of Up 

where

�

n

wp,ngq(rn) = δpqRequire that

⇒  On average, the correct amplitudes 
for the velocity moments

�up� = Up
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wp,n

or expand out the variance

�(Up − up)2� +
�

q

λpq

�
�

n

wp,ngq(rn) − δpq

�
Enforce this constraint using Lagrange multiplier

Minimize with respect to

26

Window Function Design

�U2
p � −

�

n

2wp,n�SnUp� +
�

n,m

wp,nwp,m�SnSm� +

�

q

λpq

�
�

n

wp,ngq(rn) − δpq

�
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−2�SnUp� + 2
�

m

wp,m�SnSm� +
�

q

λpqgq(rn) = 0

wp,n =
�

m

G−1
nm

�
�SmUp� −

1
2

�

q

λpqgq(rm)

�

λpq = M−1
pl

�
�

m,n

G−1
nm�SmUl�gq(rn) − δlq

�

Mpq =
1
2

�

n,m

G−1
nmgp(rn)gq(rm)

Gnm = �SnSm� individual velocity covariance matrix

27

Window Function Design
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Gnm = �snsm� + δnm(σ2
∗ + σ2

n)
= �r̂n · v(rn) r̂m · v(rm)� + δnm(σ2

∗ + σ2
n).

The cross correlation

�SmUp� =
�

n�

w�
pn��smsn��

The covariance matrix

28

Window Function Design
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Rpq = �upuq� =
�

nm

wpnwqm�snsm� =
�

nm

wpnwqmGnm

= R(v)
pq + R(�)

pq

The correlation matrix

Noise correlation matrix

R(v)
pq =

Ω1.1
m

2π2

�
dk P (k)W2

pq(k)

R(�)
pq =

�

n

wpnwqn

�
σ2

n + σ2
∗
�

29

Window Function Design

Velocity correlation matrix
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W2
pq =

�

n,m

wpnwqmfnm(k)

fmn(k) =
�

d2k̂

4π

�
r̂n · k̂

� �
r̂m · k̂

�
exp

�
ikk̂ · (rn − rm)

�

where

30

Window Function Design
Tensor square window function
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Peculiar Velocity Surveys
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Peculiar Velocity Surveys
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Peculiar Velocity Surveys
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Window Function Design
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Window Function Design
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Window Function Design
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Window Function Design
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RI = 50 h-1Mpc
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RI = 50 h-1Mpc
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RI = 50 h-1Mpc
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Comparing Surveys
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Window Function Design
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Window Function Design
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Window Function Design
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Window Function Design
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RI = 50 h-1Mpc

0

0.2

0.4

0.6

0.8

1 iii

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1 ijj

iij

0 0.05 0.1 0.15 0.2

ijk

Octupole

Tuesday, March 9, 2010



Large Scale FlowsHume A. Feldman UC Berkeley Lunch Seminar, March 10, 2010

0

0.2

0.4

0.6

0.8

1 iii

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1 ijj

iij

0 0.05 0.1 0.15 0.2

ijk

48

RI = 50 h-1Mpc

0

0.2

0.4

0.6

0.8

1 iii

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1 ijj

iij

0 0.05 0.1 0.15 0.2

ijk

RI = 50 h-1Mpc

Octupole

Tuesday, March 9, 2010



Large Scale FlowsHume A. Feldman UC Berkeley Lunch Seminar, March 10, 2010

0

0.2

0.4

0.6

0.8

1 iii

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1 ijj

iij

0 0.05 0.1 0.15 0.2

ijk

48

RI = 50 h-1Mpc

0

0.2

0.4

0.6

0.8

1 iii

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1 ijj

iij

0 0.05 0.1 0.15 0.2

ijk

RI = 50 h-1Mpc

h-1Mpc

0

0.2

0.4

0.6

0.8

1 iii

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1 ijj

iij

0 0.05 0.1 0.15 0.2

ijk

Octupole

Tuesday, March 9, 2010



Large Scale FlowsHume A. Feldman UC Berkeley Lunch Seminar, March 10, 2010

0

0.2

0.4

0.6

0.8

1 iii

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1 ijj

iij

0 0.05 0.1 0.15 0.2

ijk

48

RI = 50 h-1Mpc

0

0.2

0.4

0.6

0.8

1 iii

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1 ijj

iij

0 0.05 0.1 0.15 0.2

ijk

RI = 50 h-1Mpc

0

0.2

0.4

0.6

0.8

1 iii

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1 ijj

iij

0 0.05 0.1 0.15 0.2

ijk

h-1Mpc

Octupole

Tuesday, March 9, 2010



Large Scale FlowsHume A. Feldman UC Berkeley Lunch Seminar, March 10, 2010

0

0.2

0.4

0.6

0.8

1 iii

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1 ijj

iij

0 0.05 0.1 0.15 0.2

ijk

48

RI = 50 h-1Mpc

0

0.2

0.4

0.6

0.8

1 iii

0 0.05 0.1 0.15 0.2

0

0.2

0.4

0.6

0.8

1 ijj

iij

0 0.05 0.1 0.15 0.2

ijk

RI = 50 h-1Mpc

h-1Mpc

Octupole

Tuesday, March 9, 2010



Large Scale FlowsHume A. Feldman UC Berkeley Lunch Seminar, March 10, 2010 52

Comparing Surveys
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COMPOSITE SFI++–DEEP SFI++ DEEP WMAP5

Expected

x 86.5 ± 68.8 0.74 104.7 ± 71.0 0.72 69.0 ± 95.7 0.64 192.7 ± 115.6 0.51

y -404.9 ± 61.8 0.77 -430.3 ± 63.8 0.75 -473.6 ± 87.2 0.67 -320.7 ± 106.0 0.51 104.0

z 42.8 ± 37.7 0.89 64.9 ± 38.7 0.88 57.7 ± 59.3 0.80 62.0 ± 55.8 0.76 km/s

xx 2.73 ± 1.01 0.69 2.94 ± 1.05 0.68 3.36 ± 1.29 0.62 2.19 ± 1.76 0.47

yy 1.37 ± 0.98 0.69 2.07 ± 1.02 0.68 3.72 ± 1.27 0.63 -0.19 ± 1.79 0.42 1.290

zz -0.03 ± 0.68 0.80 0.68 ± 0.72 0.79 2.72 ± 0.96 0.71 -0.72 ± 1.04 0.67 km/s/Mpc

xy 0.13 ± 0.76 0.51 -0.01 ± 0.79 0.50 -0.71 ± 0.98 0.42 0.27 ± 1.29 0.31

yz -0.95 ± 0.57 0.63 -1.14 ± 0.59 0.62 -1.05 ± 0.78 0.52 -0.71 ± 0.94 0.40 0.640

zx 1.22 ± 0.54 0.66 1.14 ± 0.56 0.65 1.50 ± 0.74 0.56 0.98 ± 0.84 0.47 km/s/Mpc

xxx -1.2e-2 ± 2.2e-2 0.38 -5.8e-3 ± 2.3e-2 0.37 -9.3e-3 ± 2.9e-2 0.31 1.0e-2 ± 3.6e-2 0.25

yyy -2.4e-2 ± 1.7e-2 0.41 -2.3e-2 ± 1.8e-2 0.40 -1.9e-2 ± 2.4e-2 0.34 -2.2e-2 ± 2.7e-2 0.24 1.02e-2

zzz -7.2e-3 ± 1.1e-2 0.61 -7.7e-3 ± 1.1e-2 0.60 -3.3e-3 ± 1.6e-2 0.48 -2.5e-3 ± 1.6e-2 0.47 km/s/Mpc2

xyy -8.2e-3 ± 1.2e-2 0.30 -5.7e-3 ± 1.3e-2 0.30 -3.3e-2 ± 1.7e-2 0.23 2.0e-2 ± 1.9e-2 0.20

yzz 5.8e-4 ± 6.6e-3 0.44 2.8e-3 ± 6.7e-3 0.44 -1.8e-3 ± 1.0e-2 0.33 8.9e-3 ± 9.6e-3 0.30

zxx 7.3e-3 ± 7.8e-3 0.45 4.9e-3 ± 8.1e-3 0.45 8.7e-3 ± 1.1e-2 0.34 -2.1e-3 ± 1.2e-2 0.34 4.82e-3

xxy 8.3e-3 ± 1.2e-2 0.29 9.0e-3 ± 1.2e-2 0.28 5.7e-3 ± 1.6e-2 0.24 2.2e-2 ± 1.9e-2 0.16 km/s/Mpc2

yyz 6.3e-4 ± 8.3e-3 0.40 2.2e-3 ± 8.5e-3 0.40 7.7e-3 ± 1.2e-2 0.28 -2.5e-3 ± 1.2e-2 0.30

zzx 1.2e-2 ± 7.6e-3 0.46 9.9e-3 ± 7.8e-3 0.46 -2.5e-3 ± 1.1e-2 0.35 1.6e-2 ± 1.1e-2 0.34

xyz 6.6e-3 ± 5.5e-3 0.34 8.7e-3 ± 5.6e-3 0.34 9.3e-3 ± 8.2e-3 0.25 4.9e-3 ± 8.2e-3 0.22 2.65e-3

km/s/Mpc2
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Moments and correlation coefficients 
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NMOM = 3 NMOM = 9 NMOM = 19

BF Total BF shear Total BF shear octupole

COMPOSITE 1.89 6.01 1.81 41.76 17.00 0.50 52.60 78.33

SFI++-DEEP 0.92 2.80 0.85 33.21 13.67 0.20 39.47 86.37

SFI++ 3.11 1.73 3.22 7.70 16.19 0.22 11.22 89.38

DEEP 6.02 30.41 6.29 82.62 55.54 3.18 91.22 81.61

The total observed P(>χ2) in percent for NMOM = 3, 9 
and 19 for RI =50 h-1 Mpc, and the WMAP5 central 

parameters "m = 0.258 and σ8 = 0.796. 
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Work in progressSources of the Flow
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Bolejko &!Hellaby 2008

l≈310o 
b≈30o

d≈150h-1Mpc

l≈320o 
b≈10o

d≈60h-1Mpc

l≈302o 
b≈20o

d≈35h-1Mpc
Centaurus

Is there an attractor?
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Bolejko &!Hellaby 2008

l≈310o 
b≈30o

d≈150h-1Mpc

l≈320o 
b≈10o

d≈60h-1Mpc l≈295o 
b≈10o

d≈296±62h-1Mpc

l≈302o 
b≈20o

d≈35h-1Mpc
Centaurus

Is there an attractor?
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Is there an attractor?

Wouldt & Kraan-Korteweg, 2001
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Is there an attractor?

Wouldt & Kraan-Korteweg, 2001

Tuesday, March 9, 2010



Large Scale FlowsHume A. Feldman UC Berkeley Lunch Seminar, March 10, 2010 59

Is there an attractor?

Wouldt & Kraan-Korteweg, 2001
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Is there an attractor?

MV Flow Direction
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Thomas, Abdalla & Lahav (2009)MegaZ LRG DR7
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Tuesday, March 9, 2010



Large Scale FlowsHume A. Feldman UC Berkeley Lunch Seminar, March 10, 2010 61

Thomas, Abdalla & Lahav (2009)MegaZ LRG DR7
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There is a minimal sensitivity to small-scale aliasing 
which biases the results, hiding large-scale flows
Optimization of window functions removes the bias and 
shows the flow
Bulk flow disagrees with the Standard   CDM 
parameters (WMAP5) to  

Λ

63

Conclusions
Given appropriate window functions, velocity field 
surveys are consistent with each other.
Maximum Likelihood parameter estimation are robust 

and mostly agree with other methods. 

∼ 3σ

More power on k < 0.01 will make these results likely~
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Thank you
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